Теорема о неполноте

БОГ И ТЕОРЕМА ГЕДЕЛЯ

А началось все с того, что в десять лет я случайно наткнулся на научно-фантастический роман про межпланетные путешествия, прочел залпом — и увлекся астрономией. Начал читать популярную, а затем и более серьезную литературу, делал простейшие астрономические приборы, наблюдал за звездным небом.Но астрономия неотделима от математики и физики — и я стал изучать их по книгам, в каких-то областях оставив далеко позади школьную программу. К старшим классам я уже проникся внутренней красотой математики. И когда решил связать свою судьбу с педагогикой, с учительством — колебаний у меня не было. Преподавать буду именно математику!

Так я в 1983 году оказался на математическом факультете МГПИ имени В. И. Ленина. Надо сказать, что преподавание высшей математики там отвечало самым высоким требованиям. Я до сих пор с благодарностью вспоминаю своих преподавателей, которые не просто обучали своему предмету, но раскрывали его внутреннюю гармонию.

Впрочем, ближе к делу. В советское время среди прочих атеистических штампов очень популярна была идея о том, что религия — это торжество абсурда, что она никак не совместима с логическим мышлением, а логическое мышление — это основа основ, в мире есть только то, что описывается логикой. И вот я изучаю математическую логику, изучаю теорию числовых систем. Что же оказывается? Наши обыденные представления о логике поверхностны! Эта привычная нам логика неплохо работает на бытовом уровне, но если копнуть глубже — возникают неразрешимые парадоксы. И более того: оказалось, что с помощью логики невозможно доказать истинность самой логики! Об этом говорит знаменитая теорема Гёделя о неполноте формальных систем. Цепочка логических доказательств может тянуться сколь угодно далеко, но у нее все равно есть начало, все равно есть некие исходные посылки, доказать которые невозможно. Невозможно в принципе!

Это был серьезный удар по моему атеизму. Во всяком случае, по той версии атеизма, которую нам вдалбливали. Логика, оказывается, не абсолютна, у нее, оказывается, есть границы применимости. И более того — «мощность множества истинных утверждений больше мощности множества доказуемых утверждений». А если перевести с математического на человеческий — есть бесконечно много утверждений, доказать которые принципиально невозможно, но которые тем не менее верны!

Так можно ли требовать от верующих доказательств существования Бога и, не получив таковые, утверждать, будто Бога нет? Сейчас мне все это кажется банальностью, но лет в двадцать было настоящим открытием!

И еще был такой расхожий атеистический штамп — каверзный вопрос, звучащий со времен средневековья: «Может ли Бог создать такой камень, который не смог бы поднять?». Этот простейший парадокс призван был доказать, что, говоря о всемогуществе Божием, верующие несут чушь. Но если взглянуть на математическую подоплеку этого парадокса, окажется, что это лишь один из примеров тех парадоксов, которые возникли в конце XIX века в теории множеств, когда вошло в оборот понятие «универсального множества». Попробую объяснить «на пальцах». Множество — это совокупность каких-либо объектов, они, эти объекты, называются элементами множества. Множества бывают конечные, а бывают бесконечные. Есть понятие универсального множества — то есть совокупности любых множеств. И есть понятие дополнения множества — то есть совокупности всего того, что в данное множество не входит. Теперь вопрос: а у универсального множества есть дополнение? Если есть — то какое же оно тогда «универсальное»? Получается, что-то в него не входит? А если нет у него дополнения — то опять-таки оно получается не универсальным. Должно ведь включать в себя всё, в том числе и собственное дополнение!

Да, парадокс есть. Но о чем он свидетельствует? Да о том, что наши обывательские представления о бесконечности нуждаются в коррекции. Я тогда впервые задумался: а в каком же смысле верующие понимают всемогущество Божие? Потом были и книги, и споры, и сейчас мне смешно становится, когда я слышу претензии вроде «если Бог всемогущ, почему Он не может сделать так, чтобы все немедленно стали счастливы?». Как мечтал сталкер Шухарт у Стругацких в «Пикнике на обочине»: «Счастья для всех, даром, и чтобы никто не ушел обиженным». Да потому и не может, отвечаю я, что задавать подобные вопросы — значит неправильно понимать Его всемогущество, пытаться описать бесконечность в категориях конечного, применять инструмент там, где он неприменим. Топором хорошо дрова колоть, но не трепанацию черепа делать.

А тут необходимо сказать, что в математике есть два разных понимания бесконечности. Есть «потенциальная бесконечность» — это когда просто нет какого-то конца, нет границы. Например, нет самого большого числа — потому что к любому числу можно прибавить единицу и получится большее число. Но есть и «актуальная бесконечность» — это когда бесконечный объект понимается как нечто единое, цельное, когда с ним делают то же, что и, например, с числами: то есть бесконечности складывают и вычитают, преобразовывают, сравнивают… Именно «актуальная бесконечность» и порождает всяческие парадоксы. Именно идеей актуальной бесконечности мы — не всегда осознанно! — пользуемся, когда рассуждаем о Боге и о том, что Он всемогущ, вездесущ и всеведущ. Именно тут и возникает «камень, который нельзя поднять». Но эти парадоксы если что и доказывают — так только то, что мир гораздо сложнее, чем те модели, с помощью которых мы его описываем. И что мышление наше далеко от идеала, не всё мы можем постичь.

Это знание мне помогло, когда я размышлял над непостижимостью Бога. Ведь, с точки зрения советского атеиста, непостижимость — это очень обидно, это унизительно! Мы же так были уверены, что человек — это венец мироздания, что «в мире много сил великих, // но сильнее человека // нет в природе ничего». И тут оказывается, что есть вещи, которые мы не только сейчас, при нынешнем уровне науки познать не сможем, но и при любом уровне не сможем никогда! Оказывается, что наше мышление не универсально, что не охватить им всего сущего, а то, что мы называем «научной картиной мира» — это всего лишь модель. И все познание наше — это замена одних моделей другими, более совершенными, но все равно только приблизительно описывающими реальность.

Теперь оказалось, что эта наша ограниченность — вовсе не злобная выдумка церковников с их любимой присказкой «неисповедимы пути Господни», а объективный факт, подтверждаемый самой что ни на есть объективной наукой — математикой.

А еще оказалось, что математика может помочь лучше уяснить некоторые богословские утверждения, найти для них какие-то зримые аналогии. К примеру, ересь ариан, утверждавших, что Христос — это не Бог по Своей сути, а лишь первое, наиболее совершенное творение Божие. Тут аналогия — луч. То есть часть прямой: есть начало, нет конца. «Полубесконечность» такая. А православный ответ: не луч, а прямая. Нет начала. Настоящая бесконечность. Или — что такое «теозис» («обожение»)? Как человек, существо конечное, может уподобиться бесконечному Богу? Тут на помощь приходит понятие потенциальной бесконечности — то есть, соединяясь с Богом, человек преодолевает свою ограниченность, возрастает, ему открываются новые горизонты, и конца этому процессу нет. Однако нет и тождества с Богом — подобно тому, как принципиально невозможно взаимнооднозначное соответствие* между множеством натуральных чисел (то есть 1, 2, 3…) и множеством действительных чисел (то есть вообще всех чисел, известных человеку со школьным образованием — включая всяческие квадратные корни, число и так далее).

Математика не заставила меня уверовать в Бога, она всего лишь сняла те умственные барьеры, которые дало атеистическое воспитание, она расчистила дорогу к вере. Уверовал я позднее, пройдя через сомнения и шатания. Но это уже совсем другая история.

*Представьте себе множество кресел в кинотеатре — и множество зрителей. Если каждому зрителю найдется кресло и при этом все места будут заняты, тогда между этими двумя множествами есть «взаимнооднозначное соответствие». — Ред.

Исповедание великого логика

Переломным открытием математики ХХ века были теоремы о неполноте Курта Геделя. А в его рукописях, опубликованных после смерти, сохранилось логическое доказательство существования Бога. На последних Рождественских чтениях интересный доклад об этом малоизвестном наследии сделал доцент Тобольской духовной семинарии, кандидат богословия иерей Димитрий КИРЬЯНОВ. «НС» попросил объяснить главные идеи ученого.

Теоремы о неполноте Геделя: Дырка в математике

— Можно как-то популярно объяснить теоремы о неполноте Геделя? Брадобрей бреет только тех, кто не бреется сам. Бреет ли себя брадобрей? Этот знаменитый парадокс имеет к ним отношение?

Главный тезис логического доказательства существования Бога, выдвинутый Куртом Геделем: «Бог существует в мышлении. Но существование в реальности больше, нежели существование только в мысли. Следовательно, Бог должен существовать». На фото: автор теоремы о неполноте Курт Гедель со своим другом, автором теории относительности Альбертом Эйнштейном. Пристон. Америка. 1950

— Да, конечно, имеет. До Геделя существовала проблема аксиоматизации математики и проблема таких парадоксальных предложений, которые формально можно записать на любом языке. Например: «Это утверждение ложно». Какова истинность этого утверждения? Если оно истинно, значит, оно ложно, если оно ложно, значит, истинно; получается языковой парадокс. Гедель исследовал арифметику и показал в своих теоремах, что ее непротиворечивость не может быть доказана, исходя из ее самоочевидных принципов: аксиом сложения, вычитания, деления, умножения и проч. Нам требуются для ее обоснования некоторые дополнительные допущения. Это на самой простейшей теории, а что говорить о более сложных (уравнениях физики и т. п.)! Всегда для обоснования какой-то системы умозаключений мы вынуждены прибегать к некоему дополнительному умозаключению, которое в рамках системы не обосновывается.

Прежде всего это указывает на ограниченность претензий человеческого разума в познании реальности. То есть мы не можем говорить о том, что мы построим какую-то всеобъемлющую теорию мироздания, которая все объяснит, — такая теория не может быть научной.

— Как математики сейчас относится к теоремам Геделя? Никто не пытается их опровергнуть, как-то обойти?

— Это все равно что пытаться опровергнуть теорему Пифагора. Теоремы имеют строгое логическое доказательство. В то же время предпринимаются попытки найти ограничения применимости теорем Геделя. Но главным образом споры идут вокруг философских следствий теорем Геделя.

— Насколько проработано геделево доказательство существования Бога? Оно закончено?

— Оно проработано детально, хотя сам ученый до самой своей смерти так и не решился его опубликовать. Гедель развивает онтологический (метафизический. — «НС») аргумент, впервые предложенный Ансельмом Кентерберийским. В сжатой форме этот аргумент можно представить следующим образом: «Бог, по определению, является Тем, больше Кого нельзя ничего помыслить. Бог существует в мышлении. Но существование в реальности больше, нежели существование только в мысли. Следовательно, Бог должен существовать». Аргументацию Ансельма позднее развивали Рене Декарт и Готфрид Вильгельм Лейбниц. Так, по мнению Декарта, мыслить Высшее Совершенное Бытие, которому недостает существования, означает впадать в логическое противоречие. В контексте этих идей Гедель разрабатывает свою версию доказательства, она умещается буквально на двух страничках. К сожалению, изложение его аргументации невозможно без введения в основы очень сложной модальной логики.

Разумеется, логическая безупречность выводов Геделя не принуждает человека становиться верующим под давлением силы доказательств. Не следует быть наивными и полагать, что мы можем убедить любого разумно мыслящего человека уверовать в Бога с помощью онтологического аргумента или других доказательств. Вера рождается тогда, когда человек становится лицом к лицу перед очевидным присутствием высшей трансцендентной Реальности Бога. Но можно назвать по крайней мере одного человека, которого онтологическое доказательство привело к религиозной вере, — это писатель Клайв Стейплз Льюис, он сам признавался в этом.

Отдаленное будущее — это отдаленное прошлое

— Как относились к Геделю современники? Он дружил с кем-то из больших ученых?

— Ассистент Эйнштейна в Принстоне свидетельствует, что единственным человеком, с которым тот дружил в последние годы жизни, был Курт Гедель. Они были различны почти во всем — Эйнштейн общительный, веселый, а Гедель предельно серьезный, совершенно одинокий и недоверчивый. Но они имели общее качество: оба шли прямо и искренне к центральным вопросам науки и философии. Несмотря на дружбу с Эйнштейном, Гедель имел свой специфический взгляд на религию. Он отвергал представление о Боге как безличном существе, каким был Бог для Эйнштейна. По этому поводу Гедель заметил: «Религия Эйнштейна является слишком абстрактной, как у Спинозы и в индийской философии. Бог Спинозы меньше, чем личность; мой Бог больше чем личность; поскольку Бог может играть роль личности». Могут существовать духи, которые не имеют тела, но могут общаться с нами и оказывать влияние на мир».

— Как Гедель оказался в Америке? Бежал от нацистов?

— Да, он приехал в Америку в 1940 году из Германии, несмотря на то что фашисты признали его арийцем и великим ученым, освободив от военной службы. Он с женой Аделе пробирался через Россию по Транссибирской магистрали . Воспоминаний об этом путешествии он не оставил. Аделе вспоминает только о постоянном страхе по ночам, что остановят и вернут обратно. После восьми лет проживания в Америке Гедель стал гражданином США. Как и все подающие на гражданство, он должен был ответить на вопросы, касающиеся американской Конституции. Будучи скрупулезным человеком, он готовился к этому экзамену очень тщательно. Наконец сообщил, что нашел непоследовательность в Конституции: «Я открыл логически законную возможность, при которой США может стать диктатурой». Его друзья признали, что, независимо от логических достоинств аргумента Геделя, эта возможность была чисто гипотетической по своему характеру, и предостерегли от пространных разговоров на эту тему на экзамене.

— Не использовали ли Гедель и Эйнштейн идей друг друга в научной работе?

— В 1949 году Гедель выразил свои космологические идеи в математическом эссе, которое, по мнению Альберта Эйнштейна, являлось важным вкладом в общую теорию относительности . Гедель считал, что время — «эта таинственная и одновременно самопротиворечивая сущность, которая формирует основу мира и нашего собственного существования», — в конце концов станет величайшей иллюзией. Оно «когда-то» перестанет существовать, и наступит иная форма бытия, которую можно назвать вечностью. Такое представление о времени привело великого логика к неожиданному выводу. Он писал: «Я убежден в посмертном существовании, независимо от теологии. Если мир является разумно сконструированным, тогда должно быть посмертное существование».

— «Время – самопротиворечивая сущность». Странно звучит; это имеет какой-то физический смысл?

— Гедель показал, что в рамках уравнения Эйнштейна можно построить космологическую модель с замкнутым временем, где удаленное прошлое и удаленное будущее совпадают. В этой модели становится теоретически возможным путешествие во времени. Это звучит странно, но это математически выразимо — вот в чем дело. Эта модель может иметь экспериментальные следствия, а может и не иметь. Она является теоретической конструкцией, которая может оказаться полезной при построении новых космологических моделей — а может оказаться излишней. Современная теоретическая физика, в частности квантовая космология, обладает столь сложной математической структурой, что этим структурам очень сложно дать однозначное философское осмысление. Более того, некоторые ее теоретические конструкции пока являются экспериментально непроверяемыми по той простой причине, что для своей проверки требуют обнаружения очень высокоэнергетичных частиц. Помните, как народ переполошился по поводу запуска Большого андронного коллайдера: средства массовой информации постоянно пугали людей приближением конца света. На самом деле, ставился серьезный научный эксперимент по проверке моделей квантовой космологии и так называемых «теорий великого объединения». Если бы удалось обнаружить так называемые частицы Хиггса, то это стало бы очередным шагом в нашем понимании самых ранних стадий существования нашей Вселенной. Но пока нет экспериментальных данных, конкурирующие модели квантовой космологии продолжают оставаться просто математическими моделями.

Вера и интуиция

— «…Мой Бог больше чем личность; поскольку Бог может играть роль личности…» Все-таки вера Геделя далека от православного исповедания?

— Сохранилось очень мало высказываний Геделя о его вере, они по крупицам собраны. Несмотря на то что первые наброски собственной версии аргумента Гедель сделал еще в 1941 году, до 1970-го, боясь насмешек своих коллег, он не говорил об этом. В феврале 1970-го, почувствовав приближение смерти, он разрешил своей помощнице скопировать версию своего доказательства. После смерти Геделя в 1978 году в его бумагах была обнаружена несколько иная версия онтологического аргумента. Жена Курта Геделя, Аделе, через два дня после смерти мужа сказала, что Гедель, «хотя и не посещал церковь, был религиозен и читал Библию в кровати каждое воскресное утро».

Когда мы говорим о таких ученых, как Гедель, Энштейн или, скажем, Галилей или Ньютон, важно подчеркнуть то, что они не были атеистами. Они видели, что за Вселенной стоит Разум, некая Высшая Сила. Для многих ученых убежденность в существовании Высшего Разума являлась одним из следствий их научной рефлексии, и не всегда эта рефлексия приводила к возникновению глубокой религиозной связи человека с Богом. В отношении Геделя можно сказать, что он ощущал необходимость этой связи, поскольку подчеркивал, что является теистом, мыслит Бога как личность. Но, разумеется, его веру нельзя назвать ортодоксальной. Он был, так сказать, «домашним лютеранином».

— Вы можете дать исторические примеры: каким путем разные ученые приходят к вере в Бога? Вот генетика Фрэнсиса Коллинза, по его признаниям, к вере в Бога привело исследование структуры ДНК…

— Само по себе естественное богопознание недостаточно для познания Бога. Мало, изучая природу, открыть Бога — важно научиться Его познавать посредством того Откровения, которое Бог дал человеку. Приход человека к вере — независимо от того, ученый он или не ученый, — всегда опирается на что-то, что выходит за рамки просто логических или научных аргументов. Фрэнсис Коллинз пишет, что пришел к вере в 27 лет после продолжительного интеллектуального спора с самим собой и под влиянием Клайва Стейплза Льюиса. Два человека находятся в одной и той же исторической ситуации, в одних исходных условиях: один становится верующим, другой — атеистом. Одного изучение ДНК приводит к убеждению в существовании Бога. Другой изучает — и не приходит к этому. Два человека смотрят на картину: одному она кажется красивой, а другой говорит: «Так себе, обычная картинка!» У одного есть вкус, интуиция, а у другого — нет. Профессор Православного Свято-Тихоновского гуманитарного университета Владимир Николаевич Катасонов, доктор философских наук, математик по первому образованию, говорит: «Никакое доказательство в математике невозможно без интуиции: математик сначала видит картинку, а потом уже формулирует доказательство».

Вопрос о приходе человека к вере — это всегда вопрос, который выходит за рамки просто логического рассуждения. Как объяснить, что тебя привело к вере? Человек отвечает: я ходил в храм, размышлял, читал то-то, увидел гармонию мироздания; но самый главный, самый исключительный момент, в который человек вдруг познает, что он столкнулся с присутствием Бога, не может быть выражен. Это всегда тайна.

— Можно обозначить проблемы, которые не в силах разрешить современная наука?

— Все-таки наука — достаточно уверенное, самостоятельное и хорошо идущее предприятие, чтобы так резко высказываться. Она является хорошим и весьма полезным инструментом в руках человека. Со времени Фрэнсиса Бэкона знание действительно стало силой, изменившей мир. Наука развивается в соответствии со своими внутренними закономерностями: ученый стремится постичь законы мироздания, и можно не сомневаться в том, что этот поиск приведет к успеху. Но в то же время необходимо осознавать и границы науки. Не следует смешивать науку и те мировоззренческие вопросы, которые могут быть поставлены в связи с наукой. Ключевые проблемы сегодня связаны не столько с научным методом, сколько с ценностными ориентациями. Наука в течение долгого ХХ века воспринималась людьми как абсолютное благо, которое способствует прогрессу человечества; а мы видим, что ХХ век стал самым жестоким по человеческим жертвам. И тут возникает вопрос о ценностях научного прогресса, вообще познания. Этические ценности не следуют из самой науки. Гениальный ученый может изобрести оружие для уничтожения всего человечества, и здесь возникает вопрос о нравственной ответственности ученого, на который наука не может ответить. Наука не может указать человеку смысл и предназначение его существования. Наука никогда не сможет ответить на вопрос, почему мы здесь? Почему существует Вселенная? Эти вопросы решаются на другом уровне познания, таком, как философия и религия.

— Кроме теорем Геделя, есть ли еще доказательства того, что научный метод имеет свои пределы? Сами ученые это признают?

— Уже в начале XX века философы Бергсон и Гуссерль указали на относительное значение научного знания природы. Сейчас уже стало почти всеобщим убеждением среди философов науки, что научные теории представляют гипотетические модели объяснения явлений. Один из создателей квантовой механики — Эрвин Шредингер говорил о том, что элементарные частицы являются только образами, но мы вполне можем обойтись и без них. По мысли философа и логика Карла Поппера, научные теории подобны сети, посредством которой мы пытаемся поймать мир, они не похожи на фотографии. Научные теории находятся в постоянном развитии и изменении. О границах научного метода говорили создатели квантовой механики, такие как Паули, Бор, Гейзенберг. Паули писал: «…Физика и психика могут рассматриваться как дополнительные аспекты одной и той же реальности» — и акцентировал внимание на несводимости высших уровней бытия к низшим. Различные объяснения охватывают каждый раз лишь один аспект материи, но всеохватная теория никогда не будет достигнута.

Красота и гармония мироздания предполагает возможность его познания научными методами. Вместе с тем христиане всегда понимали и непостижимость тайны, стоящей за этой материальной вселенной. Вселенная не имеет основания в самой себе и указывает на совершенный источник бытия — Бога.

Священник Димитрий КИРЬЯНОВ родился в 1972 году в Тюмени, окончил Тюменский государственный университет, физический факультет (1994); Тобольскую духовную семинарию (1999); Московскую духовную академию (2002). Клирик Покровского кафедрального собора города Тобольска.

Теория противоречивости бытия

Александр Музыкантский
«В мире науки» №3, 2007

Когда речь заходит о самых выдающихся открытиях ХХ века, обычно называют теорию относительности Эйнштейна, квантовую механику, принцип неопределенности Гейзенберга. Однако многие крупные ученые — математики и философы — к числу величайших достижений научной мысли минувшего столетия относят и теорему Гёделя. Ведь если эпохальные прорывы в области физики дали возможность человеческому разуму постичь новые законы природы, то работа Гёделя позволила лучше понять принципы действия самого человеческого разума, и оказала глубокое влияние на мировоззрение и культуру нашей эпохи.

Кто же такой Гёдель?

Курт Гёдель родился 28 апреля 1906 года в Австро-Венгрии, в моравском городе Брно (в ту пору он назывался Брюнн). В 18 лет он поступил в Венский университет, где сначала изучал физику, но через два года переключился на математику. Известно, что такая смена научных интересов произошла во многом под влиянием книги Бертрана Рассела «Введение в философию математики». Еще одним источником, оказавшим существенное влияние на формирование Гёделя как ученого, было его участие в работе «Венского кружка». Под этим именем в историю науки вошло собрание блестящих ученых — математиков, логиков, философов, которые регулярно собирались в Вене с конца 20-х и до середины 30-х гг. прошлого века. В работе Венского кружка в разное время участвовали такие ученые, как Рудольф Карнап, Отто Нейрат, Герберт Фейгль, Мориц Шлик. С их деятельностью связывают становление философского позитивизма. Но фактически тематика кружка охватывала осмысление общего места научного знания в познании природы и общества. Несколько международных конференций, организованных в разных европейских научных центрах, позволяют говорить о выдающейся роли, которую сыграл венский кружок в становлении фундаментального научного знания ХХ века. Курт Гёдель принимал участие практически во всех «четверговых» заседаниях кружка и в организованных им международных конференциях. Деятельность кружка в Австрии прервалась в 1936 году, когда его руководитель Мориц Шлик был убит студентом-нацистом на ступенях Венского университета. Большинство членов кружка эмигрировали в США. Туда же перебрался и Курт Гёдель. Со временем он получил американское гражданство, работал в Институте высших исследований в Принстоне. В том же городе он и умер в 1978 году. Такова была внешняя канва его жизни. Знакомые и коллеги по работе запомнили его как человека замкнутого, болезненно ранимого, отрешенного от окружающего мира, полностью погруженного в свои мысли.

Курт Гёдель (1906—1978). Фото: «В мире науки»

О том, что логическое постижение мира занимало главное место в жизни ученого, говорит любопытная деталь его биографии. В 1948 году, когда решался вопрос о получении им американского гражданства, Гёдель должен был в соответствии с принятой процедурой сдать что-то вроде устного экзамена по азам американской конституции. Подойдя к вопросу со всей научной добросовестностью, он досконально изучил документ, и пришел к выводу, что в США законным путем, без нарушения конституции может быть установлена диктатура. Подобное открытие чуть не стоило ему провала на испытаниях, когда он вступил в дискуссию с принимавшим зачет чиновником, который, разумеется, считал основной закон своего государства величайшим достижением политической мысли. Друзья, среди которых был Альберт Эйнштейн, выступивший одним из двух поручителей Гёделя при получении им гражданства, уговорили его повременить с развертыванием своей аргументации хотя бы до принесения присяги. Позднее история получила любопытный эпилог: четверть века спустя другой американец, Кеннет Эрроу, удостоился Нобелевской премии за доказательство в общем виде утверждения, к которому пришел Гёдель, изучив американскую конституцию.

Что же доказал Гёдель?

Прежде чем перейти к изложению теоремы, обессмертившей имя Гёделя, необходимо хотя бы вкратце рассказать о том, перед какими проблемами оказалась к концу 20-х годов прошлого века математика, точнее, ее раздел, выделившийся на рубеже XIX—ХХ вв. и получивший название «основания математики».

Но вначале, пожалуй, стоит остановиться на школьном курсе геометрии, который и сейчас во многом повторяет «Начала» Евклида, написанные более 2 тыс. лет тому назад. В традиционных учебниках сначала приводятся некоторые утверждения (аксиомы) о свойствах точек и прямых на плоскости, из них путем логического построения в соответствии с правилами «аристотелевской» логики выводится справедливость разных важных и полезных геометрических фактов (теорем). Например, одна из аксиом утверждает, что через две точки проходит одна и только одна прямая, другое утверждение — знаменитый пятый постулат, от которого отказался Лобачевский в своей неевклидовой геометрии, — касается параллельных прямых, и т. д. Истинность аксиом принимается как нечто очевидное и не требующее доказательств. Заслуга греческого геометра в том, что он постарался изложить всю науку о пространственном расположении фигур как набор следствий, вытекающих из нескольких базовых положений.

В конце XIX века все пробелы евклидовых «Начал» (с точки зрения возросших требований математиков к строгости и точности своих рассуждений) были заполнены. Итогом новейших исследований стала книга немецкого математика Давида Гильберта «Основания геометрии».

Успех методики Евклида побудил ученых распространить его принципы и на другие разделы математики. После геометрии настала очередь арифметики. В 1889 году итальянский математик Джузеппе Пеано впервые сформулировал аксиомы арифметики, казавшиеся до смешного очевидными (существует нуль; за каждым числом следует еще число и т. д.), но на самом деле абсолютно исчерпывающие. Они играли ту же роль, что и постулаты великого грека в геометрии. Исходя из подобных утверждений, с помощью логического рассуждения можно было получить основные арифметические теоремы.

В тот же период немецкий математик Готлиб Фреге выдвинул еще более амбициозную задачу. Он предложил не просто аксиоматически утвердить основные свойства исследуемых объектов, но и формализовать, кодифицировать сами методы рассуждений, что позволяло записать любое математическое рассуждение по определенным правилам в виде цепочки символов. Свои результаты Фреге опубликовал в труде «Основные законы арифметики», первый том которого вышел в 1893 году, а второй потребовал еще десяти лет напряженной работы и был полностью завершен лишь в 1902 году.

С именем и научными изысканиями Фреге связана, пожалуй, одна из самых драматических историй в развитии науки о числах. Когда второй том был уже в печати, ученый получил письмо от молодого английского математика Бертрана Рассела. Поздравив коллегу с выдающимися результатами, Рассел, тем не менее, указал на одно обстоятельство, прошедшее мимо внимания автора. Коварным «обстоятельством» был получивший впоследствии широкую известность «парадокс Рассела», представлявший собой вопрос: будет ли множество всех множеств, не являющихся своими элементами, своим элементом? Фреге не смог немедленно разрешить загадку. Ему не оставалось ничего другого, как только добавить в послесловии к выходящему из печати второму тому своей книги полные горечи слова: «Вряд ли что-нибудь может быть более нежелательным для ученого, чем обнаружить, что основания едва завершенной работы рухнули. Письмо, полученное мной от Бертрана Рассела, поставило меня именно в такое положение…» Огорченный математик взял академический отпуск в своем университете, потратил массу сил, пытаясь подправить свою теорию, но всё было тщетно. Он прожил еще более двадцати лет, но не написал больше ни одной работы по арифметике.

Однако Расселу удалось вывести вариант формальной системы, позволяющий охватить всю математику и свободный от всех известных к тому времени парадоксов, с опорой именно на идеи и работы Фреге. Полученный им результат, опубликованный в 1902 году в книге Principia Mathematica (написанной совместно с Алфредом Нортом Уайтхедом), фактически стал аксиоматизацией логики, а Давид Гильберт считал, что его «можно рассматривать как венец всех усилий по аксиоматизации науки».

Была и еще одна причина столь пристального интереса математиков к основаниям своей дисциплины. Дело в том, что на рубеже XIX и ХХ столетий в теории множеств были обнаружены противоречия, для обозначения которых был придуман эвфемизм «парадоксы теории множеств». Наиболее известный из них — знаменитый парадокс Рассела — был, увы, не единственным. Более того, для большинства ученых было очевидно, что за открытием новых странностей дело не станет. Их появление оказало на математический мир, по выражению Гильберта, «катастрофическое воздействие», поскольку теория множеств играла роль фундамента, на котором возводилось всё здание науки о числах. «Перед лицом этих парадоксов надо признать, что положение, в котором мы пребываем сейчас, на длительное время невыносимо. Подумайте: в математике — этом образце надежности и истинности — понятия и умозаключения, как их всякий изучает, преподает и применяет, приводят к нелепостям. Где же тогда искать надежность и истинность, если даже само математическое мышление дает осечку?», — сокрушался Гильберт в своем докладе на съезде математиков в июне 1925 года.

Таким образом, впервые за три тысячелетия математики вплотную подошли к изучению самых глубинных оснований своей дисциплины. Сложилась любопытная картина: любители цифр научились четко объяснять, по каким правилам они ведут свои вычисления, им оставалось лишь доказать «законность» принятых ими оснований с тем, чтобы исключить любые сомнения, порождаемыми злополучными парадоксами. И в первой половине 20-х годов великий Гильберт, вокруг которого сложилась к тому времени школа блестящих последователей, в целой серии работ наметил план исследований в области оснований математики, получивший впоследствии название «Геттингенской программы». В максимально упрощенном виде ее можно изложить следующим образом: математику можно представить в виде набора следствий, выводимых из некоторой системы аксиом, и доказать, что:

  1. Математика является полной, т.е. любое математическое утверждение можно доказать или опровергнуть, основываясь на правилах самой дисциплины.
  2. Математика является непротиворечивой, т.е. нельзя доказать и одновременно опровергнуть какое-либо утверждение, не нарушая принятых правил рассуждения.
  3. Математика является разрешимой, т.е., пользуясь правилами, можно выяснить относительно любого математического утверждения, доказуемо оно или опровержимо.

Фактически программа Гильберта стремилась выработать некую общую процедуру для ответа на все математические вопросы или хотя бы доказать существование таковой. Сам ученый был уверен в утвердительном ответе на все три сформулированные им вопроса: по его мнению, математика действительно была полной, непротиворечивой и разрешимой. Оставалось только это доказать.

Более того, Гильберт полагал, что аксиоматический метод может стать основой не только математики, но и науки в целом. В 1930 году в статье «Познание природы и логика» он писал: «…даже в самых обширных по своему охвату областях знания нередко бывает достаточно небольшого числа исходных положений, обычно называемых аксиомами, над которыми затем чисто логическим путем надстраивается всё здание рассматриваемой теории».

Какими были бы для дальнейшего развития науки последствия успеха Гильберта и его школы? Если бы, как он считал, вся математика (и наука в целом) сводилась к системе аксиом, то их можно было бы ввести в вычислительную машину, способную по программе, следующей общим логическим правилам, обосновать любое утверждение (то есть доказать теорему), вытекающее из исходных утверждений.

Будь теория Гильберта реализована, работающие в круглосуточном режиме суперкомпьютеры непрерывно доказывали бы всё новые и новые теоремы, размещая их на бесчисленных сайтах «всемирной паутины». Вслед за математикой «аксиоматическая эпоха» наступила бы в физике, химии, биологии и, наконец, очередь дошла бы и до науки о человеческом сознании. Согласитесь, окружающий нас мир, да и мы сами, выглядели бы в подобном случае несколько иначе.

Однако «вселенская аксиоматизация» не состоялась. Вся суперамбициозная, грандиозная программа, над которой несколько десятилетий работали крупнейшие математики мира, была опровергнута одной-единственной теоремой. Ее автором был Курт Гёдель, которому к тому времени едва исполнилось 25 лет.

В 1930 году на конференции, организованной «Венским кружком» в Кенигсберге, он сделал доклад «О полноте логического исчисления», а в начале следующего года опубликовал статью «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах». Центральным пунктом его работы были формулировка и доказательство теоремы, которая сыграла фундаментальную роль во всём дальнейшем развитии математики, и не только ее. Речь идет о знаменитой теореме Гёделя о неполноте. Наиболее распространенная, хотя и не вполне строгая ее формулировка утверждает, что «для любой непротиворечивой системы аксиом существует утверждение, которое в рамках принятой аксиоматической системы не может быть ни доказано, ни опровергнуто». Тем самым Гёдель дал отрицательный ответ на первое утверждение, сформулированное Гильбертом.

Любопытно, что на этой же конференции с докладом на тему «Каузальное знание и квантовая механика» выступил Вернер Гейзенберг. В этом докладе были намечены первые подходы к его знаменитым «соотношениям неопределенности».

Выводы Гёделя произвели в математическом сообществе эффект интеллектуальной бомбы. Тем более что вскоре на их основе были получены опровержения двух других пунктов программы Гильберта. Оказалось, что математика неполна, неразрешима, и ее непротиворечивость нельзя доказать (в рамках той самой системы, непротиворечивость которой доказывается).

Теорема Гёделя

С тех пор прошло три четверти века, но споры о том, что же всё-таки доказал Гёдель, не утихают. Особенно жаркие прения идут в околонаучных кругах. «Теорема Гёделя о неполноте является поистине уникальной. На нее ссылаются всякий раз, когда хотят доказать «всё на свете» — от наличия богов до отсутствия разума», — пишет выдающийся современный математик В. А. Успенский.

Если оставить в стороне многочисленные подобные спекуляции, то нужно отметить, что ученые разделились в вопросе оценки роли Гёделя на две группы. Одни вслед за Расселом считают, что знаменитая теорема, которая легла в основу современной математической логики, тем не менее, оказала весьма незначительное влияние на дальнейшую работу за пределами данной дисциплины — математики как доказывали свои теоремы в «догёделевскую» эпоху, так и продолжают доказывать их и по сей день.

Что же касается фантасмагорического видения компьютеров, непрерывно доказывающих всё новые теоремы, то смысл подобной деятельности у многих специалистов вызывает большое сомнение. Ведь для математики важна не только формулировка доказанной теоремы, но и ее понимание, поскольку именно оно позволяет выявить связь между различными объектами и понять, в каком направлении можно двигаться дальше. Без такого понимания теоремы, генерируемые на основе правил формализованного вывода, представляют собой лишь своего рода «математический спам», — таково мнение сотрудника кафедры математической логики и теории алгоритмов мехмата МГУ Александра Шеня.

Похожим образом рассуждал и сам Гёдель. Тем, кто упрекал его в разрушении целостности фундамента математики, он отвечал, что по сути ничего не изменилось, основы остались по-прежнему незыблемыми, а его теорема привела лишь к переоценке роли интуиции и личной инициативы в той области науки, которой управляют железные законы логики, оставляющие, казалось бы, мало места для подобных достоинств.

Гёдель и Эйнштейн (фото: «В мире науки»)

Однако некоторые ученые придерживаются другого мнения. Действительно, если считать умение логически рассуждать основной характеристикой человеческого разума или, по крайней мере, главным его инструментом, то теорема Гёделя прямо указывает на ограниченность возможностей нашего мозга. Согласитесь, что человеку, воспитанному на вере в бесконечное могущество мысли, очень трудно принять тезис о пределах ее власти.

Скорее уж речь может идти об ограниченности наших представлений о собственных ментальных возможностях. Многие специалисты полагают, что формально-вычислительные, «аристотелевские» процессы, лежащие в основе логического мышления, составляют лишь часть человеческого сознания. Другая же его область, принципиально «невычислительная», отвечает за такие проявления, как интуиция, творческие озарения и понимание. И если первая половина разума подпадает под гёделевские ограничения, то вторая от подобных рамок свободна.

Наиболее последовательный сторонник подобной точки зрения — крупнейший специалист в области математики и теоретической физики Роджер Пенроуз — пошел еще дальше. Он предположил существование некоторых квантовых эффектов невычислительного характера, обеспечивающих реализацию творческих актов сознания. И хотя многие его коллеги критически относятся к идее наделить человеческий мозг гипотетическими квантовыми механизмами, Пенроуз со своими сотрудниками уже разработал схему эксперимента, который должен, по их мнению, подтвердить их наличие.

Одним их многочисленных следствий гипотезы Пенроуза может стать, в частности, вывод о принципиальной невозможности создания искусственного интеллекта на основе современных вычислительных устройств, даже в том случае, если появление квантовых компьютеров приведет к грандиозному прорыву в области вычислительной техники. Дело в том, что любой компьютер может лишь всё более детально моделировать работу формально-логической, «вычислительной» деятельности человеческого сознания, но «невычислительные» способности интеллекта ему недоступны.

Такова лишь небольшая часть естественнонаучных и философских споров, вызванных опубликованной 75 лет назад математической теоремой молодого Гёделя. Вместе с другими великими современниками он заставил человека иначе взглянуть на окружающий мир и на самого себя. Величайшие открытия первой трети ХХ века, в том числе теорема Гёделя, а также создание теории относительности и квантовой теории, показали ограниченность механистически-детерминистской картины природы, созданной на основе научных исследований двух предшествующих столетий. Оказалось, что и пути развития мироздания, и нравственные императивы подчиняются принципиально другим закономерностям, где имеют место и неустранимая сложность, и неопределенность, и случайность, и необратимость.

Однако последствия великого научного переворота не исчерпываются уже упомянутыми. К началу ХХ века идеи лапласовско-ньютоновского детерминизма оказывали огромное влияние на развитие общественных наук. Вслед за корифеями классического естествознания, представлявшими природу в виде жесткой механической конструкции, где все элементы подчиняются строгим законам, а будущее может быть однозначно предсказано, если известно текущее состояние, жрецы деятели общественных наук рисовали человеческое общество, подчиненное непреложным закономерностям и развивающееся в заранее заданном направлении. Одной из последних попыток сохранить подобную картину мира был, по-видимому, марксизм-ленинизм, приверженный концепции «единственно верного научного учения», составной частью которого было «материалистическое понимание истории». Достаточно вспомнить ленинскую идею построения социалистического общества по типу «большой фабрики».

Постепенно с огромным трудом идеи о сложности, случайности, неопределенности, утвердившиеся в естественнонаучной картине мироздания, стали проникать и в социальные и гуманитарные науки. В обществе непредрешенность реализуется через феномен личной свободы индивидуума. Именно присутствие в природе человека в качестве субъекта, осуществляющего вольный и непредсказуемый выбор, делает исторический процесс сложным и не подчиняющимся никаким непреложным законам вселенского развития.

Однако нельзя не заметить, что обретение новой картины сложного мира в нашей стране происходило с огромным трудом. Господствовавшая семь десятилетий идеология тяготела к детерминизму лапласовского типа как философии всеобщего авторитарного порядка. Именно такой принцип предопределенности лежал в основе мечты, никогда не покидавшей правящую советскую бюрократию, об обществе-фабрике, управляемой жесткими законами иерархии. И поэтому всякий раз, как речь заходила о сложности, плюрализме, разнообразии, будь то теория относительности, квантовая механика, генетика, кибернетика, социологические исследования, психоанализ и т. д., — сразу включался механизм идеологической цензуры, который имел своей целью изгнать все упоминания о свободе и из природы, и из общества. Увы, косное наследие до сих пор мрачной тенью довлеет над умами многих наших соотечественников и современников. Свидетельством тому — инициируемые властью мучительные поиски новой «национальной идеологии», которая могла бы занять место, освободившееся в связи с кончиной коммунистической доктрины.

Так Курт Гёдель и его великие современники заставили нас по-новому взглянуть и на «звездное небо над головой, и на нравственный закон внутри нас», и на общество, в котором мы живем.

Теорема Хеза.

⇐ ПредыдущаяСтр 7 из 37

  1. Вопрос 21 Теорема Коуза и проблема внешних эффектов (экстерналий). Выводы из теоремы. Российская приватизация в свете теоремы Коуза
  2. Вопрос 26. Теорема Коуза
  3. Дивидендная политика компании. Вторая теорема Модильяни-Миллера.
  4. Кинетическая энергия НМС в частных случаях движения. Теорема Кенига
  5. Многочлены. Кольцо многочленов над кольцом с единицей. Делимость многочленов, теорема о делении с остатком. Значение и корень многочлена. Теорема Безу.
  6. Модель Белла-Лападулы как основа построения систем мандатного разграничения доступа. Основные положения модели. Базовая теорема безопасности (BST).
  7. Модель системы безопасности HRU. Основные положения модели. Теорема об алгоритмической неразрешимости проблемы безопасности в произвольной системе.
  8. Обратная матрица. Теорема существования обратной матрицы. Теорема о единственности.
  9. Основная задача теории информации. Теорема отсчетов.
  10. Основная теорема о линейной зависимости

Теорема (Хеза). Пусть является отношением, и — атрибуты или множества атрибутов этого отношения. Если имеется функциональная зависимость , то проекции и образуют декомпозицию без потерь.

Доказательство. Необходимо доказать, что для любого состояния отношения . В левой и правой части равенства стоят множества кортежей, поэтому для доказательства достаточно доказать два включения для двух множеств кортежей: и .

Докажем первое включение. Возьмем произвольный кортеж . Докажем, что он включается также и в . По определению проекции, кортежи и . По определению естественного соединения кортежи и , имеющие одинаковое значение общего атрибута , будут соединены в процессе естественного соединения в кортеж . Таким образом, включение доказано.

Докажем обратное включение. Возьмем произвольный кортеж . Докажем, что он включается также и в . По определению естественного соединения получим, что в имеются кортежи и . Т.к. , то существует некоторое значение , такое что кортеж . Аналогично, существует некоторое значение , такое что кортеж . Кортежи и имеют одинаковое значение атрибута , равное . Из этого, в силу функциональной зависимости , следует, что . Таким образом, кортеж . Обратное включение доказано. Теорема доказана.

Замечание. В доказательстве теоремы Хеза наличие функциональной зависимости не использовалось при доказательстве включения . Это означает, что при выполнении декомпозиции и последующем восстановлении отношения при помощи естественного соединения, кортежи исходного отношения не будут потеряны. Основной смысл теоремы Хеза заключается в доказательстве того, что при этом не появятся новые кортежи, отсутствовавшие в исходном отношении.

Т.к. алгоритм нормализации (приведения отношений к 3НФ) основан на имеющихся в отношениях функциональных зависимостях, то теорема Хеза показывает, что алгоритм нормализации является корректным, т.е. в ходе нормализации не происходит потери информации.

НФБК

Определение 1. Отношение находится в нормальной форме Бойса-Кодда (НФБК) тогда и только тогда, когда детерминанты всех функциональных зависимостей являются потенциальными ключами.

Замечание. Если отношение находится в НФБК, то оно автоматически находится и в 3НФ. Действительно, это сразу следует из определения 3НФ.

Пример . Предположим, что нам необходимо учитывать поставки, но каждый акт поставки должен иметь некоторый уникальный номер (назовем его «сквозной номер поставки»). Отношение может иметь следующий вид:

Номер поставщика PNUM Номер детали DNUM Поставляемое количество VOLUME Сквозной номер поставки NN

Одним потенциальным ключом данного отношения является, пара атрибутов {PNUM, DNUM}. Другим ключом, в силу уникальности сквозного номера, является атрибут NN. В данном отношении имеются следующие функциональные зависимости: Зависимость атрибутов от первого ключа отношения:

{PNUM, DNUM} VOLUME, {PNUM, DNUM} NN, Зависимость атрибутов от второго ключа отношения: NN PNUM, NN DNUM, NN VOLUME,

Зависимости, являющиеся следствием зависимостей от ключей отношения:

{PNUM, DNUM} {VOLUME, NN}, NN {PNUM, DNUM}, NN {PNUM, VOLUME}, NN {DNUM, VOLUME}, NN {PNUM, DNUM, VOLUME}.

детерминанты всех зависимостей являются потенциальными ключами, поэтому данное отношение находится в НФБК. Особенностью данного отношения является то, что оно имеет два совершенно независимых потенциальных ключа.

Дата добавления: 2015-04-18; просмотров: 122; Нарушение авторских прав